

Achieving Safety-Critical Determinism with Multicore Processors

Embedded Tech Trends January 24-25, 2019 Richard Jaenicke richj@ghs.com

Multicore is Everywhere

Even in Most Regulated Industries

Except Safety-Critical Applications

© 2019 Green Hills Software

Strict Determinism is Required for Flight Safety

DAL A is the Strictest Safety Level

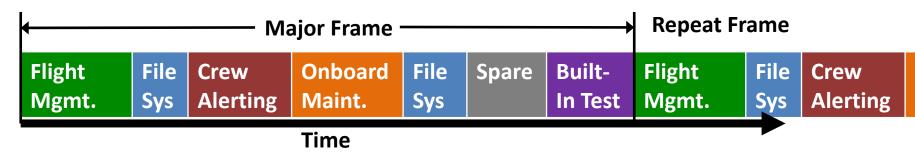
DAL A failure rate is 10^-9/h

- 1 failure every 114,155 years of continuous operation
- No single HW failure can result in a catastrophic event

Design Assurance Level	Failure condition	Failure Rate
А	Catastrophic	10 ⁻⁹ /h
В	Hazardous	10 ⁻⁷ /h
С	Major	10 ⁻⁵ /h
D	Minor	10 ⁻³ /h
E	No Effect	n/a

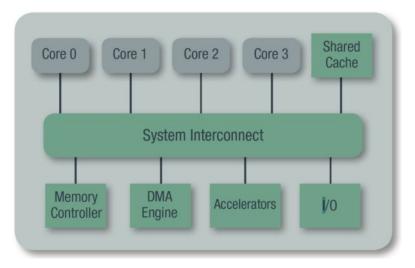
System Complexity Makes Failure Evaluation Difficult

"Lion Air pilots unable to correct for faulty sensor"


© 2019 Green Hills Software

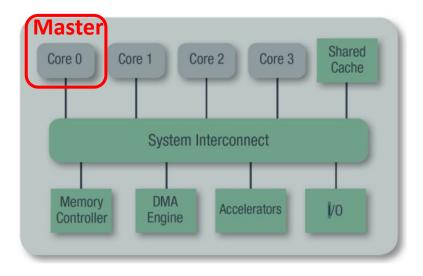
Achieving Determinism in a Single-Core World

Avoid Interference between Applications through Partitioning of Space and Time (ARINC 653)


- Memory Space Partitioning
 - Enforced by CPU's Memory Management Unit (MMU)
- Processor Time Partitioning
 - RTOS gives each application a fixed length time window

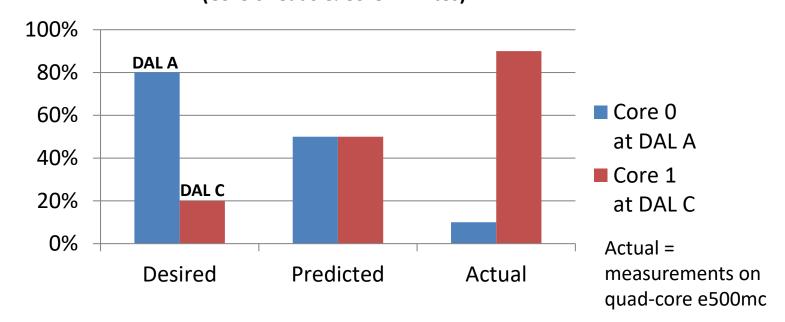
Multicore is More Complex

Multicore must address contention for shared resources

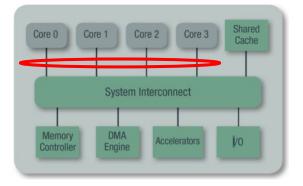

For flight safety, certification authority guidance is in CAST-32A

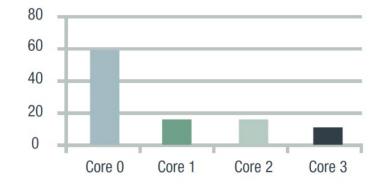
Simple Approach Doesn't Work Well

Try to have one core responsible for all shared resource access


- Possible for I/O, but results in vast under utilization of cores
- Impossible for memory controller without running only one core at a time

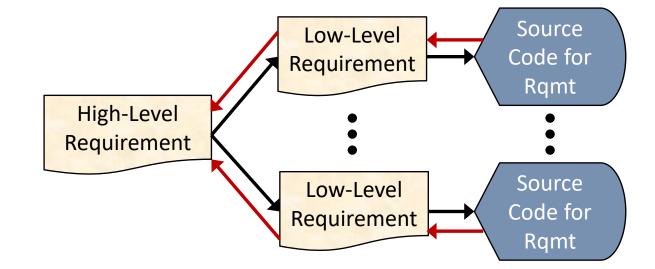
Memory Access can be Very Unfair


Memory Bandwidth Per Core (Core 0 reads & Core 1 writes)

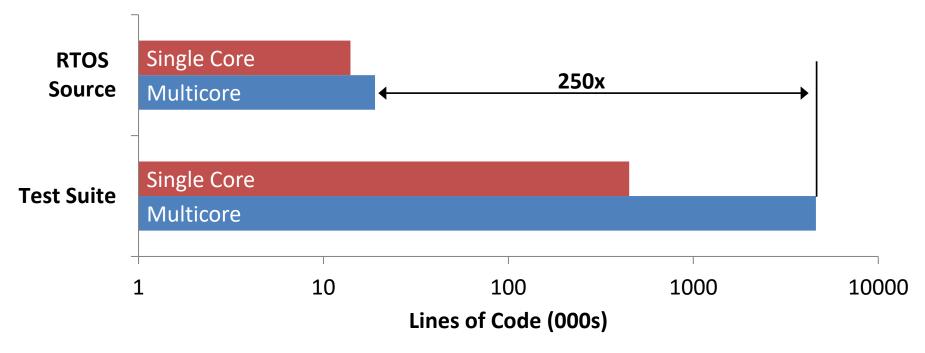

General Solution is to Enforce QoS

- □ All shared access goes through on-chip interconnect, so can enforce it there
- □ Set access thresholds for each time window for each core, enforced by the OS

Example Bandwidth Allocations

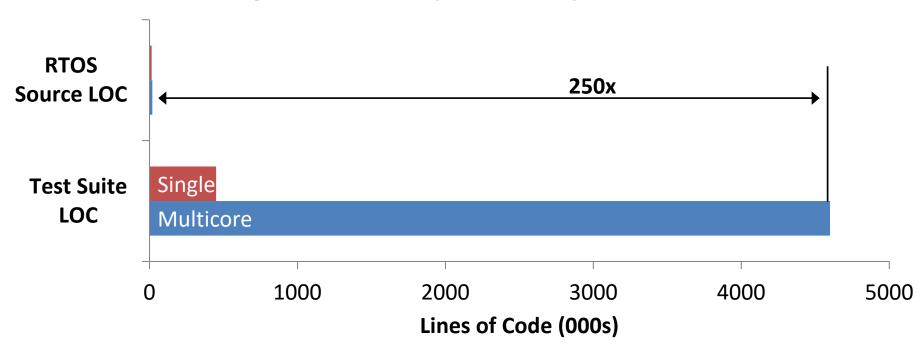

Multiple Layers for Safety Certification

DAL-A Requires Complete Traceability



DAL-A Requires Huge Testing Green Hills[®] SOFTWARE Test Code for that Reqmt. Source Low-Level Code for Requirement Rqmt Test Code **High-Level** for that Requirement Regmt. Source Low-Level Code for Requirement Test Code Rqmt for that Reqmt.

Test Suites Can Be Huge for Multicore



Testing Increases Exponentially for Multicore

Test Suites Can Be Huge for Multicore

Testing Increases Exponentially for Multicore

Deterministic multicore is hard, but achievable

- Contention for shared resources causes unpredictable delays
- □ Must enforce QoS, such as via bandwidth allocation
- □ Testing and validation are exponentially harder for multicore

Almost Impossible for System Integrators to do Themselves Use suppliers with the most extensive support for multicore interference mitigation, testing, and validation suites

See Also

- FAA Position Paper: CAST 32A Multicore processors <u>https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf</u>
- Whitepaper: Optimal Multicore Processing for Safety-Critical Applications https://www.curtisswrightds.com/infocenter/white-papers/optimal-multicore-

processing-for-safety-critical-applications.html

Website: GHS solutions for Aerospace and Defense <u>https://www.ghs.com/AerospaceDefense.html</u>